The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^2 - 2*x1 + 1 1 x1 - 1] [1 0 1 x1^3 - x1^2 + x1 0 1 0 x1 - 1 x1^3 - x1^2 + x1 x1 x1^2 - x1] [0 0 0 0 1 1 1 x1 x1^3 - x1^2 x1 x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^15 + 6*x1^14 - 20*x1^13 + 44*x1^12 - 68*x1^11 + 75*x1^10 - 57*x1^9 + 28*x1^8 - 8*x1^7 + x1^6) avoiding the zero loci of the polynomials RingElem[x1 - 1, x1, x1^2 - x1 + 1, 2*x1^2 - 2*x1 + 1, x1^3 - x1^2 + 1, x1^2 - 2*x1 + 2, x1^3 - 2*x1^2 + 3*x1 - 1, 2*x1 - 1, x1^3 - x1^2 + 2*x1 - 1, x1^4 - 2*x1^2 + 3*x1 - 1, x1^4 - x1^3 + 2*x1 - 1]